Hyperoxia impairs postnatal alveolar epithelial development via NADPH oxidase in newborn mice.

نویسندگان

  • Richard L Auten
  • S Nicholas Mason
  • Kathryn M Auten
  • Mulugu Brahmajothi
چکیده

Hyperoxia disrupts postnatal lung development in part through inducing inflammation. To determine the contribution of leukocyte-derived reactive oxygen species, we exposed newborn wild-type and NADPH oxidase p47(phox) subunit null (p47(phox-/-)) mice to air or acute hyperoxia (95% O(2)) for up to 11 days. Hyperoxia-induced pulmonary neutrophil influx was similar in wild-type and p47(-/-) mice at postnatal days (P) 7 and 11. Macrophages were decreased in wild-type hyperoxia-exposed mice compared with p47(phox-/-) mice at P11. Hyperoxia impaired type II alveolar epithelial cell and bronchiolar epithelial cell proliferation, but depression of type II cell proliferation was significantly less in p47(-/-) mice at P3 and P7, when inflammation was minimal. We found reciprocal results for the expression of the cell cycle inhibitor p21(cip/waf) in type II cells, which was induced in 95% O(2)-exposed wild-type mice, but significantly less in p47(phox-/-) littermates at P7. Despite partial preservation of type II cell proliferation, deletion of p47(phox) did not prevent the major adverse effects of hyperoxia on alveolar development estimated by morphometry at P11, but hyperoxia impairment of elastin deposition at alveolar septal crests was significantly worse in wild-type vs. p47(phox-/-) mice at P11. Since we found that p47(phox) is expressed in a subset of alveolar epithelial cells, its deletion may protect postnatal type II alveolar epithelial proliferation from hyperoxia through effects on epithelial as well as phagocyte-generated superoxide.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Silencing hyperoxia-induced C/EBPα in neonatal mice improves lung architecture via enhanced proliferation of alveolar epithelial cells.

Postnatal lung development requires proliferation and differentiation of specific cell types at precise times to promote proper alveolar formation. Hyperoxic exposure can disrupt alveolarization by inhibiting cell growth; however, it is not fully understood how this is mediated. The transcription factor CCAAT/enhancer binding protein-α (C/EBPα) is highly expressed in the lung and plays a role i...

متن کامل

Transgenic extracellular superoxide dismutase protects postnatal alveolar epithelial proliferation and development during hyperoxia.

Transgenic (TG) human (h) extracellular superoxide dismutase (EC-SOD) targeted to type II cells protects postnatal newborn mouse lung development against hyperoxia by unknown mechanisms. Because alveolar development depends on timely proliferation of type II epithelium and differentiation to type I epithelium, we measured proliferation in bronchiolar and alveolar (surfactant protein C-positive)...

متن کامل

Type II epithelial cells are critical target for hyperoxia-mediated impairment of postnatal lung development.

Type II epithelial cells are essential for lung development and remodeling, as they are precursors for type I cells and can produce vascular mitogens. Although type II cell proliferation takes place after hyperoxia, it is unclear why alveolar remodeling occurs normally in adults whereas it is permanently disrupted in newborns. Using a line of transgenic mice whose type II cells could be identif...

متن کامل

NADPH oxidase and ERK signaling regulates hyperoxia-induced Nrf2-ARE transcriptional response in pulmonary epithelial cells.

Oxidative stress plays a major role in hyperoxia-induced acute lung injury. We have shown previously that mice lacking the Nrf2 are more susceptible to hyperoxia than are wild-type mice. Nrf2 activates antioxidant response element (ARE)-mediated gene expression involved in cellular protection against toxic insults. The present study was designed to investigate the mechanisms that control the ac...

متن کامل

Neonatal oxygen adversely affects lung function in adult mice without altering surfactant composition or activity.

Despite its potentially adverse effects on lung development and function, supplemental oxygen is often used to treat premature infants in respiratory distress. To understand how neonatal hyperoxia can permanently disrupt lung development, we previously reported increased lung compliance, greater alveolar simplification, and disrupted epithelial development in adult mice exposed to 100% inspired...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 297 1  شماره 

صفحات  -

تاریخ انتشار 2009